28 research outputs found

    Obstructive hydrocephalus and intracerebral mass secondary to Epicoccum nigrum

    Get PDF
    Here we report a case of a 14-week-old girl with a history of intrauterine drug exposure and hypoxic ischemic encephalopathy secondary to cardiac arrest requiring prolonged resuscitation at birth presented with irritability and a bulging anterior fontanelle. After neurosurgical resection, pathologic examination showed fungal hyphae, an

    BTECH: A Platform to Integrate Genomic, Transcriptomic and Epigenomic Alterations in Brain Tumors

    Get PDF
    The identification of molecular signatures predictive of clinical behavior and outcome in brain tumors has been the focus of many studies in the recent years. Despite the wealth of data that are available in the public domain on alterations in the genome, epigenome and transcriptome of brain tumors, the underlying molecular mechanisms leading to tumor initiation and progression remain largely unknown. Unfortunately, most of these data are scattered in multiple databases and supplementary materials of publications, thus making their retrieval, evaluation, comparison and visualization a rather arduous task. Here we report the development and implementation of an open access database (BTECH), a community resource for the deposition of a wide range of molecular data derived from brain tumor studies. This comprehensive database integrates multiple datasets, including transcript profiles, epigenomic CpG methylation data, DNA copy number alterations and structural chromosomal rearrangements, tumor-associated gene lists, SNPs, genomic features concerning Alu repeats and general genomic annotations. A genome browser has also been developed that allows for the simultaneous visualization of the different datasets and the various annotated features. Besides enabling an integrative view of diverse datasets through the genome browser, we also provide links to the original references for users to have a more accurate understanding of each specific dataset. This integrated platform will facilitate uncovering interactions among genetic and epigenetic factors associated with brain tumor development. BTECH is freely available at http://cmbteg.childrensmemorial.org/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12021-010-9091-9) contains supplementary material, which is available to authorized users

    Targeting CD133 improves chemotherapeutic efficacy of recurrent pediatric pilocytic astrocytoma following prolonged chemotherapy

    Get PDF
    Quantification of western blot results showing overexpression of pAKT(S473, T308) and pNF-ƙB/p65 in recurrent PAs with chemotherapy, compared to matched primary tumors. (TIF 52 kb

    Identification of MicroRNAs as Potential Prognostic Markers in Ependymoma

    Get PDF
    INTRODUCTION: We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers. MATERIALS AND METHODS: We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features. RESULTS: We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival. CONCLUSION: We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas

    High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum

    Get PDF
    DNA methylation, the only known covalent modification of mammalian DNA, occurs primarily in CpG dinucleotides. 51% of CpGs in the human genome reside within repeats, and 25% within Alu elements. Despite that, no method has been reported for large-scale ascertainment of CpG methylation in repeats. Here we describe a sequencing-based strategy for parallel determination of the CpG-methylation status of thousands of Alu repeats, and a computation algorithm to design primers that enable their specific amplification from bisulfite converted genomic DNA. Using a single primer pair, we generated amplicons of high sequence complexity, and derived CpG-methylation data from 31 178 Alu elements and their 5′ flanking sequences, altogether representing over 4 Mb of a human cerebellum epigenome. The analysis of the Alu methylome revealed that the methylation level of Alu elements is high in the intronic and intergenic regions, but low in the regions close to transcription start sites. Several hypomethylated Alu elements were identified and their hypomethylated status verified by pyrosequencing. Interestingly, some Alu elements exhibited a strikingly tissue-specific pattern of methylation. We anticipate the amplicons herein described to prove invaluable as epigenome representations, to monitor epigenomic alterations during normal development, in aging and in diseases such as cancer

    Genome-wide quantitative assessment of variation in DNA methylation patterns

    Get PDF
    Genomic DNA methylation contributes substantively to transcriptional regulations that underlie mammalian development and cellular differentiation. Much effort has been made to decipher the molecular mechanisms governing the establishment and maintenance of DNA methylation patterns. However, little is known about genome-wide variation of DNA methylation patterns. In this study, we introduced the concept of methylation entropy, a measure of the randomness of DNA methylation patterns in a cell population, and exploited it to assess the variability in DNA methylation patterns of Alu repeats and promoters. A few interesting observations were made: (i) within a cell population, methylation entropy varies among genomic loci; (ii) among cell populations, the methylation entropies of most genomic loci remain constant; (iii) compared to normal tissue controls, some tumors exhibit greater methylation entropies; (iv) Alu elements with high methylation entropy are associated with high GC content but depletion of CpG dinucleotides and (v) Alu elements in the intronic regions or far from CpG islands are associated with low methylation entropy. We further identified 12 putative allelic-specific methylated genomic loci, including four Alu elements and eight promoters. Lastly, using subcloned normal fibroblast cells, we demonstrated the highly variable methylation patterns are resulted from low fidelity of DNA methylation inheritance

    Cellular injury and neuroinflammation in children with chronic intractable epilepsy

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To elucidate the presence and potential involvement of brain inflammation and cell death in neurological morbidity and intractable seizures in childhood epilepsy, we quantified cell death, astrocyte proliferation, microglial activation and cytokine release in brain tissue from patients who underwent epilepsy surgery.</p> <p>Methods</p> <p>Cortical tissue was collected from thirteen patients with intractable epilepsy due to focal cortical dysplasia (6), encephalomalacia (5), Rasmussen's encephalitis (1) or mesial temporal lobe epilepsy (1). Sections were processed for immunohistochemistry using markers for neuron, astrocyte, microglia or cellular injury. Cytokine assay was performed on frozen cortices. Controls were autopsy brains from eight patients without history of neurological diseases.</p> <p>Results</p> <p>Marked activation of microglia and astrocytes and diffuse cell death were observed in epileptogenic tissue. Numerous fibrillary astrocytes and their processes covered the entire cortex and converged on to blood vessels, neurons and microglia. An overwhelming number of neurons and astrocytes showed DNA fragmentation and its magnitude significantly correlated with seizure frequency. Majority of our patients with abundant cell death in the cortex have mental retardation. IL-1beta, IL-8, IL-12p70 and MIP-1beta were significantly increased in the epileptogenic cortex; IL-6 and MCP-1 were significantly higher in patients with family history of epilepsy.</p> <p>Conclusions</p> <p>Our results suggest that active neuroinflammation and marked cellular injury occur in pediatric epilepsy and may play a common pathogenic role or consequences in childhood epilepsy of diverse etiologies. Our findings support the concept that immunomodulation targeting activated microglia and astrocytes may be a novel therapeutic strategy to reduce neurological morbidity and prevent intractable epilepsy.</p

    Radical surgery versus organ preservation via short-course radiotherapy followed by transanal endoscopic microsurgery for early-stage rectal cancer (TREC): a randomised, open-label feasibility study

    Get PDF
    Background: Radical surgery via total mesorectal excision might not be the optimal first-line treatment for early-stage rectal cancer. An organ-preserving strategy with selective total mesorectal excision could reduce the adverse effects of treatment without substantially compromising oncological outcomes. We investigated the feasibility of recruiting patients to a randomised trial comparing an organ-preserving strategy with total mesorectal excision. Methods: TREC was a randomised, open-label feasibility study done at 21 tertiary referral centres in the UK. Eligible participants were aged 18 years or older with rectal adenocarcinoma, staged T2 or lower, with a maximum diameter of 30 mm or less; patients with lymph node involvement or metastases were excluded. Patients were randomly allocated (1:1) by use of a computer-based randomisation service to undergo organ preservation with short-course radiotherapy followed by transanal endoscopic microsurgery after 8–10 weeks, or total mesorectal excision. Where the transanal endoscopic microsurgery specimen showed histopathological features associated with an increased risk of local recurrence, patients were considered for planned early conversion to total mesorectal excision. A non-randomised prospective registry captured patients for whom randomisation was considered inappropriate, because of a strong clinical indication for one treatment group. The primary endpoint was cumulative randomisation at 12, 18, and 24 months. Secondary outcomes evaluated safety, efficacy, and health-related quality of life assessed with the European Organisation for Research and Treatment of Cancer (EORTC) QLQ C30 and CR29 in the intention-to-treat population. This trial is registered with the ISRCTN Registry, ISRCTN14422743. Findings: Between Feb 22, 2012, and Dec 19, 2014, 55 patients were randomly assigned at 15 sites; 27 to organ preservation and 28 to radical surgery. Cumulatively, 18 patients had been randomly assigned at 12 months, 31 at 18 months, and 39 at 24 months. No patients died within 30 days of initial treatment, but one patient randomly assigned to organ preservation died within 6 months following conversion to total mesorectal excision with anastomotic leakage. Eight (30%) of 27 patients randomly assigned to organ preservation were converted to total mesorectal excision. Serious adverse events were reported in four (15%) of 27 patients randomly assigned to organ preservation versus 11 (39%) of 28 randomly assigned to total mesorectal excision (p=0·04, χ2 test). Serious adverse events associated with organ preservation were most commonly due to rectal bleeding or pain following transanal endoscopic microsurgery (reported in three cases). Radical total mesorectal excision was associated with medical and surgical complications including anastomotic leakage (two patients), kidney injury (two patients), cardiac arrest (one patient), and pneumonia (two patients). Histopathological features that would be considered to be associated with increased risk of tumour recurrence if observed after transanal endoscopic microsurgery alone were present in 16 (59%) of 27 patients randomly assigned to organ preservation, versus 24 (86%) of 28 randomly assigned to total mesorectal excision (p=0·03, χ2 test). Eight (30%) of 27 patients assigned to organ preservation achieved a complete response to radiotherapy. Patients who were randomly assigned to organ preservation showed improvements in patient-reported bowel toxicities and quality of life and function scores in multiple items compared to those who were randomly assigned to total mesorectal excision, which were sustained over 36 months’ follow-up. The non-randomised registry comprised 61 patients who underwent organ preservation and seven who underwent radical surgery. Non-randomised patients who underwent organ preservation were older than randomised patients and more likely to have life-limiting comorbidities. Serious adverse events occurred in ten (16%) of 61 non-randomised patients who underwent organ preservation versus one (14%) of seven who underwent total mesorectal excision. 24 (39%) of 61 non-randomised patients who underwent organ preservation had high-risk histopathological features, while 25 (41%) of 61 achieved a complete response. Overall, organ preservation was achieved in 19 (70%) of 27 randomised patients and 56 (92%) of 61 non-randomised patients. Interpretation: Short-course radiotherapy followed by transanal endoscopic microsurgery achieves high levels of organ preservation, with relatively low morbidity and indications of improved quality of life. These data support the use of organ preservation for patients considered unsuitable for primary total mesorectal excision due to the short-term risks associated with this surgery, and support further evaluation of short-course radiotherapy to achieve organ preservation in patients considered fit for total mesorectal excision. Larger randomised studies, such as the ongoing STAR-TREC study, are needed to more precisely determine oncological outcomes following different organ preservation treatment schedules. Funding: Cancer Research UK
    corecore